A Serpin Regulates Dorsal-Ventral Axis Formation in the Drosophila Embryo
نویسندگان
چکیده
Extracellular serine protease cascades have evolved in vertebrates and invertebrates to mediate rapid, local reactions to physiological or pathological cues. The serine protease cascade that triggers the Toll signaling pathway in Drosophila embryogenesis shares several organizational characteristics with those involved in mammalian complement and blood clotting. One of the hallmarks of such cascades is their regulation by serine protease inhibitors (serpins). Serpins act as suicide substrates and are cleaved by their target protease, forming an essentially irreversible 1:1 complex. The biological importance of serpins is highlighted by serpin dysfunction diseases, such as thrombosis caused by a deficiency in antithrombin. Here, we describe how a serpin controls the serine protease cascade, leading to Toll pathway activation. Female flies deficient in Serpin-27A produce embryos that lack dorsal-ventral polarity and show uniform high levels of Toll signaling. Since this serpin has been recently shown to restrain an immune reaction in the blood of Drosophila, it demonstrates that proteolysis can be regulated by the same serpin in different biological contexts.
منابع مشابه
The Dorsal-related immunity factor (Dif) can define the dorsal-ventral axis of polarity in the Drosophila embryo.
In Drosophila embryos, dorsal-ventral polarity is defined by a signal transduction pathway that regulates nuclear import of the Dorsal protein. Dorsal protein's ability to act as a transcriptional activator of some zygotic genes and a repressor of others defines structure along the dorsal-ventral axis. Dorsal is a member of a group of proteins, the Rel-homologous proteins, whose activity is reg...
متن کاملSpätzle regulates the shape of the Dorsal gradient in the Drosophila embryo.
Dorsal-ventral polarity of the Drosophila embryo is established by a nuclear gradient of Dorsal protein, generated by successive gurken-Egfr and spätzle-Toll signaling. Overexpression of extracellular Spätzle dramatically reshapes the Dorsal gradient: the normal single peak is broadened and then refined to two distinct peaks of nuclear Dorsal, to produce two ventral furrows. This partial axis d...
متن کاملThe Drosophila spitz gene encodes a putative EGF-like growth factor involved in dorsal-ventral axis formation and neurogenesis.
We describe the molecular characterization of the Drosophila gene spitz (spi), which encodes a putative 26-kD, EGF-like transmembrane protein that is structurally similar to TGF-alpha. Temporal and spatial expression patterns of spi transcripts indicate that spi is expressed throughout the embryo. Examination of mutant embryos reveals that spi is involved in a number of unrelated developmental ...
متن کاملA cytoplasmic determinant for dorsal axis formation in an early embryo of Xenopus laevis.
In Xenopus laevis, dorsal cells that arise at the future dorsal side of an early cleaving embryo have already acquired the ability to cause axis formation. Since the distribution of cytoplasmic components is markedly heterogeneous in an egg and embryo, it has been supposed that the dorsal cells are endowed with the activity to form axial structures by inheriting a unique cytoplasmic component o...
متن کاملThe maternal JAK/STAT pathway of Drosophila regulates embryonic dorsal-ventral patterning.
Activation of NFkappaB plays a pivotal role in many cellular processes such as inflammation, proliferation and apoptosis. In Drosophila, nuclear translocation of the NFkappaB-related transcription factor Dorsal is spatially regulated in order to subdivide the embryo into three primary dorsal-ventral (DV) domains: the ventral presumptive mesoderm, the lateral neuroectoderm and the dorsal ectoder...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Current Biology
دوره 13 شماره
صفحات -
تاریخ انتشار 2003